

Bonjour,

Il nous tient à cœur que vous vous sentiez bien dans votre habitat au naturel. Nos produits rigoureusement écologiques, strictement contrôlés pour les substances nocives vous assistent dans cette démarche.

Afin de garantir la qualité irréprochable de nos produits, nous soumettons les matières premières principales utilisées à des contrôles sur les substances nocives éventuelles de manière régulière et aléatoire.

Les analyses sont réalisées par un institut spécialisé indépendant. Nous travaillons en étroite collaboration avec les experts de l'institut de contrôle pour définir les critères sur lesquels chaque groupe de produit doit être analysé.

Les critères de contrôles et les résultats sont disponibles dans le rapport d'analyse ci-dessous.

Votre famille Olle

allnatura Vertriebs GmbH & Co. KG Mögglinger Straße 71

73540 Heubach

Gesellschaft für Schadstoffanalytik und Begutachtung mbH

Fahrenheitstr. 1 D-28359 Bremen Fon +49(0)421 / 7 66 65 Fax +49(0)421 / 7 14 04 mail@bremer-umweltinstitut.de www.bremer-umweltinstitut.de

AZ: M 2355 FT

28.02.2025

Sehr geehrte Damen und Herren,

in der Anlage übersenden wir Ihnen die Untersuchungsergebnisse des eingesandten Massivholzes für Möbel.

Die Probe wurde auf Schwermetalle, AOX und Chlorphenole sowie auf ihr Emissionsverhalten in der Prüfkammer und den Geruch untersucht.

Dabei **entspricht** das untersuchte Muster "**Kiefernholz**" in Bezug auf die geprüften Parameter **mit Ausnahme** der **Emissionen an Terpenen** den strengen **Anforderungen** des Bremer Umweltinstitutes an Rückstände, Geruch und Emissionen in Hölzern für Möbel.

Terpene kommen natürlicherweise u.a. in Harzen von Nadelhölzern vor. Die Konzentration der Terpene in Hölzern ist abhängig von der Holzart, Wachstumsbedingungen und Standort der Bäume und unterliegt deutlichen Schwankungen. Die Höhe der in dem geprüften Kiefernholz nachgewiesenen Terpenemissionen ist für diese Holzart nicht ungewöhnlich. Das vorrangig gefundene a-Pinen und d³-Caren können gemeinhin, wie einige andere Terpene auch, Haut, Augen und Atemwege reizen, d³-Caren kann zudem bei Kontakt allergische Hautreaktionen verursachen.

Einzelne Ergebnisse entnehmen Sie bitte dem beiliegenden ANALYSENBERICHT. Dieser ist wie folgt gegliedert:

Der Analysenbericht ist wie folgt gegliedert:

- 1. AUFTRAGSBESCHREIBUNG
- 2. PRÜFVERFAHREN
- 3. ERGEBNISSE

Sollten Sie Fragen zum Bericht haben, stehen wir Ihnen gerne telefonisch beratend zur Verfügung.

Mit freundlichen Grüßen Bremer Umweltinstitut

Ulrike Siemers,

Dipl.-Ing. Chemietechnik (FH)

Anlagen: ANALYSENBERICHT

ANALYSENBERICHT

1 <u>Auftragsbeschreibung</u>

Auftraggeber: allnatura Vertriebs GmbH & Co. KG

Mögglinger Straße 71 73540 Heubach

Auftragsdatum: 11.12.2024

Auftragnehmer: Bremer Umweltinstitut

Gesellschaft für Schadstoffanalytik und Begutachtung mbH

Fahrenheitstraße 1 28359 Bremen

Prüfberichtsnummer: M 2355 FT

Probeneingang: 11.12.2024

Prüfzeitraum: 17.12.2024 bis 26.02.2025

Probenart: Massivholz, Kieferholz

Probenehmer: Die Materialprobenahme erfolgte auftraggeberseitig. Die Prüflings-

vorbereitung und die Luftprobenahmen erfolgten durch das Bremer

Umweltinstitut.

1.1 Probenbeschreibung

Probennummer	Bezeichnung*	Probenmenge	Prüfziel
M 2355 FT - 1	Holzprobe Massivholz, Kiefernholz	Oberfläche: 0,0625 m ²	- AOX - Chlorphenole incl Emissionsprüfung in der 0,125 m³- Prüfkammer - Geruch - Schwermetalle
M 2355 FT - 1.1	Luftprobe Prüfkammerluft nach 3 Tagen	Volumen 2,00 Liter	flüchtige organische Verbindungen (VOC)
M 2355 FT - 1.2	<i>Luftprobe</i> Prüfkammerluft nach 3 Tagen		Rückstellprobe
M 2355 FT - 1.3	Luftprobe Prüfkammerluft nach 3 Tagen		Rückstellprobe
M 2355 FT - 1.4	<i>Luftprobe</i> Prüfkammerluft nach 3 Tagen	Volumen 50 Liter	Aldehyde und Ketone
M 2355 FT - 1.5	Luftprobe Prüfkammerluft nach 3 Tagen	Volumen 40 Liter	Aldehyde und Ketone

Probennummer	Bezeichnung*	Probenmenge	Prüfziel
M 2355 FT - 1.6	<i>Luftprobe</i> Prüfkammerluft nach 28 Tagen	Volumen 2,00 Liter	flüchtige organische Verbindungen (VOC)
M 2355 FT - 1.7	<i>Luftprobe</i> Prüfkammerluft nach 28 Tagen		Rückstellprobe
M 2355 FT - 1.8	<i>Luftprobe</i> Prüfkammerluft nach 28 Tagen		Rückstellprobe
M 2355 FT - 1.9	<i>Luftprobe</i> Prüfkammerluft nach 28 Tagen	Volumen 50 Liter	Aldehyde und Ketone
M 2355 FT - 1.10	Luftprobe Prüfkammerluft nach 28 Tagen	Volumen 40 Liter	Aldehyde und Ketone

Rückstellproben = Proben, die im Bremer Umweltinstitut zur eventuellen späteren Verwendung eingelagert bzw. zu Vergleichszwecken in ein nicht ausgewertetes Chromatogramm überführt werden.

* Die Probenbeschreibung basiert auf den Angaben des Auftraggebers

1.1.1 Angaben zum Prüfgegenstand und Prüfablauf

1.1.1 Angaben zum Prutgegens	cana una rialabiaan					
Prüfgegenstand						
Allgemeine Beschreibung / Probenart	Massivholzmöbel, Kiefernholz					
Verpackung bei Probeneingang	In PE-Folie					
Zustand der Probe	unversehrt					
Lagerung der Probe bis zur Prüfung	Luftdicht verpackt unter üblichen raumklimatischen Bedingungen.					
Herstellung des Prüfkörpers und	l Prüfablauf					
Datum der Prüfkörperherstellung	17.12.2024					
Präparierung des Prüfkörpers	Zuschneiden auf die Maße 35,9cm x 7,6 cm. Die Schnittkante wurde mit Aluminiumfolie abgeklebt.					
Beginn der Emissionsmessung	17.12.2024, 15:00 Uhr					
Probenahme nach 3 Tagen	20.12.2024, 12:00 Uhr					
Probenahme nach 28 Tagen	14.01.2025, 15:10 Uhr					
	Abb. 1: Prüfstück in der 0,125 m³ Prüfkammer					

2 Prüfverfahren

2.1 Prüfverfahren zur Emissions- und Geruchsuntersuchung von Materialproben mittels Prüfkammer

- 1. Kammerprüfung nach DIN EN 16516:2020-10 Akkreditierungsstatus: Akkreditiertes Verfahren der Bremer Umweltinstitut GmbH
- 2. Probenahme und Analytik der flüchtigen organischen Verbindungen nach DIN ISO 16000-6:2022-03, Volumenstrom 0,2 L/min
 - Akkreditierungsstatus: Akkreditiertes Verfahren der Bremer Umweltinstitut GmbH
- 3. Probenahme und Analytik der Aldehyde und Ketone nach DIN ISO 16000-3:2023-12, Volumenstrom 1,5 L/min (0,25 m³-Prüfkammer)
 - Akkreditierungsstatus: Akkreditiertes Verfahren der Bremer Umweltinstitut GmbH
- 4. Geruchsprüfung nach RAL-GZ 430: Ausgabe Januar 2022. Die Durchführung der Untersuchung erfolgt nach 28 Tagen Verweilzeit in der Prüfkammer, bei 23°C und 50 % relativer Feuchte durch 7 Probanden

Akkreditierungsstatus: Nicht akkreditiertes Verfahren der Bremer Umweltinstitut GmbH.

Prüfkammerparameter:	M 2355 FT Kiefernholz
Probenoberfläche	0,0625 m ²
Kammerluftvolumen	0,125 m³
Temperatur	23,0 °C
rel. Luftfeuchte	50 %
Produktbeladung	0,5 m ² /m ³
Luftwechselrate	0,5 h⁻¹
Flächenspez. Luftwechselrate:	1,0 m ³ /(m ² *h)

Qualität der Klimaparameter: In der Regel wurden bei der Emissionsprüfung folgende Klimaparameter eingehalten:

Temperatur: 23°C +- 1°C relative Feuchtigkeit: 50°mF +- 3° %Pkt. Luftaustauschrate: 0,5 1/h +-3% Luftgeschwindigkeit: 0,1-0,3 m/s

2.2 Prüfverfahren zur Untersuchung auf Chlorphenole

PAW 021:2023-05

- 1. Soxhletextraktion mit Aceton
- 2. Derivatisierung mit Pentafluorbenzoylchlorid und Essigsäureanhydrid
- 3. Trennung, Identifizierung und Quantifizierung mittels GC/ECD

Akkreditierungsstatus: Akkreditiertes Verfahren der Bremer Umweltinstitut GmbH

2.3 Prüfverfahren zur Untersuchung auf AOX

Nach DIN EN ISO 9562:2005-02

- 1. Extraktion mit Reinstwasser
- 2. Adsorption an Aktivkohle, Verbrennung im Sauerstoffstrom
- 3. Microcoulometrische Bestimmung des Halogengehaltes, Berechnet als Chlor.

Die Analytik wurde an ein für das Analyseverfahren akkreditiertes Labor vergeben

2.4 Prüfverfahren zur Untersuchung auf Schwermetalle

- 1. Totalaufschluss in der Mikrowelle mit Hochdruckgefäßen mit Salpetersäure (DIN EN 16711-1:2016-02)
- Quantitative Bestimmung gemäß DIN EN ISO 17294-2:2024-03 mittels ICP-MS

Die Analytik wurde an ein für das Analyseverfahren akkreditiertes Labor vergeben

3 <u>Ergebnisse</u>

3.1 Ergebnisse der Untersuchung auf Chlorphenole

Parameter (CAS-Nr.)	M 2355 FT Massivholzmöbel, Kiefernholz [mg/kg]	BG [mg/kg]	Anforderung BUI¹ [mg/kg]
2,3,5-Trichlorphenol (933-78-8)	< BG	0,05	≤ 0,5
2,4,5-Trichlorphenol (95-95-4)	< BG	0,05	≤ 0,5
2,4,6-Trichlorphenol (88-06-2)	< BG	0,05	≤ 0,5
2,3,4-Trichlorphenol (15950-66-0)	< BG	0,05	≤ 0,5
2,3,5,6-Tetrachlorphenol (935-95-5)	< BG	0,10	≤ 0,5
2,3,4,6-Tetrachlorphenol (58-90-2)	< BG	0,02	≤ 0,5
2,3,4,5- Tetrachlorphenol (4901-51-3)	< BG	0,02	≤ 0,5
Pentachlorphenol (87-86-5)	< BG	0,02	≤ 0,5

< = kleiner als, die Gehalte liegen unter der Berichtsgrenze

<u>Anmerkung*</u>: Rückstände von den geprüften Chlorphenolen wurden in dem untersuchten Massivholz nicht gefunden.

3.2 Ergebnisse der Untersuchung auf AOX

Parameter	M 2355 FT Massivholzmöbel, Kiefernholz [mg/kg]	BG [mg/kg]	Anforderung BUI ¹ [mg/kg]
AOX	< BG	0,5	≤ 1

< = kleiner als, die Gehalte liegen unter der Bestimmungsgrenze

¹Anforderung des Bremer Umweltinstitutes, Version 01/21

<u>Anmerkung*</u>: Das untersuchte Muster entspricht in Bezug auf den AOX-Gehalt den Anforderungen des Bremer Umweltinstitutes an Rückstände in Hölzern für Möbel.

^{≤ =} kleiner oder gleich

BG = Berichtsgrenze

¹Anforderung des Bremer Umweltinstitutes, Version 01/21

BG = Bestimmungsgrenze

^{*}Beurteilungsgrundlage ist der Messwert ohne Berücksichtigung von Messungenauigkeiten.

3.3 Ergebnisse der Geruchsuntersuchung der Materialprobe

Parameter	M 2355 FT Massivholzmöbel, Kiefernholz	Anforderung BUI ¹
Intensität des Geruchs	2,4	≤ 3
Geruchsbeschreibung	Nach Holz (6x), nach Harz (2x), säuerlich (1x)	

 $[\]leq$ = kleiner oder gleich

Intensität 1 = nicht wahrnehmbar

Intensität 2 = wahrnehmbar , nicht störend

Intensität 3 = deutlich wahrnehmbar, aber noch nicht störend

¹Anforderung des Bremer Umweltinstitutes, Version 01/21

Intensität 4 = störend

Intensität 5 = stark störend

Intensität 6 = unerträglich

Bei dem aufgeführten Ergebnis handelt es sich um einen Durchschnittswert der subjektiven Eindrücke von 7 Prüfern.

Anmerkung*: Der Geruch der untersuchten Probe entspricht den Anforderungen des Bremer Umweltinstitutes an Rückstände in Hölzern für Möbel.

Ergebnisse der Untersuchung auf Schwermetalle und Bor 3.4

Parameter	M 2355 FT BG Massivholzmöbel, Kiefernholz [mg/kg] [mg/l		Anforderung BUI ¹ [mg/kg]
Bor	< BG	5	≤ 25
Chrom	< BG	1	≤ 5
Kupfer	< BG	1	≤ 10
Quecksilber	< BG	0,05	≤ 0,1

< = kleiner als, die Gehalte liegen unter der Bestimmungsgrenze ¹Anforderung des Bremer Umweltinstitutes, Version 01/21

BG = Bestimmungsgrenze

Anmerkung*: Das untersuchte Muster entspricht in Bezug auf die Schwermetalle und Bor den Anforderungen des Bremer Umweltinstitutes an Rückstände in Hölzern für Möbel.

^{*}Beurteilungsgrundlage ist der Messwert ohne Berücksichtigung von Messungenauigkeiten.

3.5 Ergebnisse der Untersuchung der Prüfkammerluft

Parameter	CAS-Nummer	Zuordnung	NIK-Wert	M 2355 FT-1	M 2355 FT-1	M 2355 FT-1	M 2355 FT-1
				3 Tage	3 Tage	28 Tage	28 Tage
					über Toluol		über Toluol
			μg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
Aromaten							
Toluol	108-88-3	VOC	2.900	2		1	
4-Cymol (4-Isopropylmethylbenzol)	99-87-6	VOC	1.000	9		5	
weitere Alkylbenzole $\leq C_{13} + C_{15}$		VOC	450		4		1
Terpene							
a-Pinen	80-56-8	VOC	2.500	450		250	
b-Pinen	127-91-3	VOC	1.400	15		10	
Camphen	79-92-5	VOC	1.400	8		7	
d ³ -Caren	13466-78-9/498-15-7	VOC	1.500	900		460	
a-Terpinen	99-86-5	VOC	1.400	7		4	
R+-Limonen	138-86-3	VOC	5.000	46		22	
alpha-Phellandren	99-83-2	VOC	1.400	2		1	
b-Myrcen	123-35-3	VOC	1.400	32		15	
a-Terpineol	98-55-5	VOC	1.400	3		< BG	
Longifolen	475-20-7	VOC	1.400	1		< BG	
sonstige Terpene		VOC	1.400		56		20
Ketone							
Aceton	67-64-1	VVOC	120.000		6		2
2-Heptanon	110-43-0	VOC		1	1	< BG	1
Ether							
2-Pentylfuran	3777-69-3	VOC		1	4	< BG	< BG
Ester und Lactone							
Methylacetat	79-20-9	VVOC		< BG	2	< BG	< BG
Ethylacetat (Essigsäureethylester)	141-78-6	VVOC		< BG	1	< BG	< BG
Gamma-Butyrolacton	96-48-0	VOC	2.800	1		< BG	

Parameter	CAS-Nummer	Zuordnung	NIK-Wert	M 2355 FT-1	M 2355 FT-1	M 2355 FT-1	M 2355 FT-1
				3 Tage	3 Tage	28 Tage	28 Tage
			/ 27	F / 27	über Toluol	F / 27	über Toluol
Aldebade			μg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
Aldehyde		1000	100	2.1	1	4.4	1
Formaldehyd*1	50-00-0	VVOC	100	21		14	
Acetaldehyd*1	75-07-0	VVOC	300	3		< BG	
n-Pentanal	110-62-3	VOC	800	23		12	
n-Hexanal	66-25-1	VOC	900	47		28	
n-Heptanal	111-71-7	VOC	900	1		1	
n-Oktanal	124-13-0	VOC	900	< BG		2	
n-Nonanal	124-19-6	VOC	900	2		< BG	
n-Decanal	112-31-2	VOC	900	2		< BG	
Alkansäuren				-			
Ethansäure (Essigsäure) ⁴⁾	64-19-7	VOC	1.200	150		53	
Propansäure (Propionsäure)	79-09-4	VOC	1.500	9		5	
n-Butansäure (Buttersäure)	107-92-6	VOC	1.800	< BG		1	
n-Pentansäure (Valerieansäure)	109-52-4	VOC	2.100	2		1	
n-Hexansäure (Capronsäure)	142-62-1	VOC	2.100	7		4	
Alkohole							
n-Butanol	71-36-3	VOC	3.000	2		2	
n-Pentanol	71-41-0	VOC	730	24		13	
n-Hexanol	111-27-3	VOC	2.100	2		1	
Sonstige Verbindungen							
D3 (Hexamethylcyclotrisiloxan)	541-05-9	VOC		< BG	< BG	14	11
Weitere identifizierte und nicht identifizierte, halbq	uantitativ bestimmte Substa	nzen					
Methansäure	64-18-6	VVOC			3		< BG
Terpinolen	586-62-9	VOC			44		19
Σ Alkohole	(various)	SVOC			1		4
TVOC inkl. SVOC mit NIK-Wert		.	-	1.8	300	9:	10
R-Wert				1,	35	0,	70
Σ VOC ohne NIK-Wert					14		80
Σ SVOC ohne SVOC mit NIK-Wert				<	5 ²	<	5 ²
Σ Kanzerogene				<	1 ³	<	1 ³
TVOC über Toluol ab 5 μg/m³				9	70	6	10
TVOC über Toluol ab 1 µg/m³				1.0	000	64	40

 Σ = Summe < BG = kleiner Berichtsgrenze

μg = Mikrogramm = 1 millionstel Gramm

 größer als: Die Konzentration des Analyten überschreitet für die Quantifizierungsmasse den Aufzeichnungsbereich des Massenspektrometers (Überladung). Ein exaktes Messergebnis kann daher nicht angegeben werden.

μg/m³ = Mikrogramm pro Kubikmeter

Kat. 1A / Kat. 1B= krebserregende Stoffe gemäß EU-Einstufung (EG VO 1272/2008) Kat. K1A und K1B

TVOC =Summe aller organischen Verbindungen (identifizierte und nicht identifizierte Verbindungen) ≥ 5 µg/m³ im Retentionszeifenster von C₆-C₁₆, nicht identifizierte Verbindungen bestimmt über den Response von Toluol nach AgBB-Bewertungskonzept 2024

 $TVOC_{Toluol} = Summe \ der \ Einzelverbindungen \geq 5 \ \mu g/m^3 \ im \ Retentionszeitfenster \ von \ C_6 - C_{16}, berechnet \ \ddot{u}ber \ den \ Response \ von \ Toluol \ den \ Response \ den \ Response \ den \ Response \ den \$

TSVOC = Summe aller Verbindungen ≥ 5 µg/m³ im Retentionszeitfenster von C_{>16}-C₂₂, nach AgBB-Bewertungskonzept 2024

NIK-Wert= Niedrigste Interessierende Konzentration nach AgBB-Bewertungsschema 2021, Tabelle 1

R-Wert = Summe der Einzelstoffkonzentrationen $\geq 5~\mu g/m^3$ geteilt durch den entsprechenden NIK-Wert

C-Stoffe = Krebserzeugende Verbindungen gemäß EG-Verordnung 1272/2008, Tabelle 3.1 Kat., 1A und 1B, Berücksichtigungsgrenze 1 µg/m³

R-Stoffe = erbgutverändernde Stoffe gemäß EU-Einstufung Kat. K1A und K1B sowie TRGS 905

SVOC = Einzelstoffe im Retentionszeitbereich $C_{>16}$ - C_{22}

VVOC = Einzelstoffe im Retentionszeitbereich C< 6

¹ = DNPH-Methode, DIN ISO 16000-3 für Formaldehyd und weitere Aldehyde bis C₅, Benzaldehyd

 2 = jede Einzelverbindung < 5 μ g/m³ 3 = jede Einzelverbindung < 1 μ g/m³

⁴ = Essigsäure wird mit diesem Verfahren nur unvollständig erfasst.

Berichtsgrenzen je Parameter:

1 μg/m³

 $2 \ \mu g/m^3$ für Propansäure , DPG, n-Nonanal

3 µg/m³ für Ethylenglykol, DEGMH, 2-Butanon, Ethanol 5 µg/m³ für 2-Propanol, Formaldehyd, Acetaldehyd, Acrolein

7 μg/m³ für Ethylenglykol, Essigsäure , D3, DIBP und DBP

< 1 µg/m³ für C-Stoffe

Anmerkungen:

- 1. Flächenspez. Emissionsrate: Die angegebenen Luftkonzentrationen können durch Multiplikation mit der flächenspezifischen Luftwechselrate q in die flächenspezifischen Emissionsraten umgerechnet werden.
- 2. Doppelproben: Die Untersuchungsergebnisse der Luftproben aus der Prüfkammer werden in der Regel mindestens durch eine Zweitprobe abgesichert.

Hintergrundkonzentrationen: Die Hintergrundkonzentrationen der Prüfkammern vor der Beladung durch das Prüfmaterial liegen in der Regel für den TVOC unterhalb von 20 μ g/m³, für Toluol, Ethylacetat und Essigsäure unterhalb von 10 μ g/m³, für Formaldehyd unterhalb von 6 μ g/m³ und für alle weiteren Substanzen unterhalb von 2 μ g/m³.

Übersicht geprüfte/kalibrierte VOC:

Werden die unten aufgeführten Verbindungen nicht in der Ergebnistabelle angezeigt, so wurden sie in dieser Probe nicht nachgewiesen.

Alkane, Aliphaten: n-Hexan (110-54-3), n-Heptan (142-82-5), 2-Methylpentan (107-83-5), 3-Methylpentan (96-14-0), iso-Heptan (591-76-4), 3-Methylpexan (589-34-4), 2,3-Dimethylpentan (565-59-3), 2-Methylpexan (592-27-8), 3-Methylpexan (589-81-1), 4-Methylpexan (589-53-7), 2,2,4-Trimethylpentan (540-84-1), n-Oktan (111-65-9), n-Nonan (111-84-2), n-Dekan (124-18-5), 2,2,4,6,6-Pentamethylpexan (13475-82-6), n-Undekan (1120-21-4), n-Dodekan (112-40-3), n-Tridekan (629-50-5), 2,2,4,4,6,8,8-Heptamethylnonan (4390-04-9), n-Tetradekan (629-59-4), n-Pentadekan (629-62-9), n-Hexadekan (544-76-3), n-Heptadekan (629-78-7), n-Oktadekan (583-45-3), n-Nonadekan (629-29-5), n-Eicosan (112-95-8), n-Heneicosan (629-94-7), n-Docosan (629-97-0)

Cycloalkane: Cyclopentan (287-92-3), Methylcyclopentan (99-37-7), Cyclohexan (110-82-7), Methylcyclohexan (108-87-2), trans-Decalin (493-02-7), 1,4-Dimethylcyclohexan (589-90-2)

Alkene, Olefine: Cyclohexen (110-83-8), 4-Vinylcyclohexen (100-40-3), 1-Okten (111-66-0), 1-Decen (25339-53-1), 1-Undecen (821-95-4), 1-Dodecen (112-41-4), Isobuten-Trimer (7756-94-7), 4-Phenylcyclohexen (4994-16-5)

Aromaten: Benzol (*71-43-2*), Toluol (*108-88-3*), Ethinylbenzol (536-74-3), Ethylbenzol (100-41-4), m,p-Xylol (108-38-3/106-42-3), o-Xylol (95-47-6), Styrol (100-42-5), Styroloxid (96-09-3), Cumol (98-82-8), n-Propylbenzol (103-65-1), 1,2,3-Trimethylbenzol (526-73-8), 1,2,4-Trimethylbenzol (95-63-6), 1,3,5-Trimethylbenzol (108-67-8), 2-Ethyltoluol (611-14-3), 3-Ethyltoluol (620-14-4), 4-Ethyltoluol (622-96-8), Diethylbenzol Isomerengemisch (25340-17-4), 2-Cymol (527-84-4), 3-Cymol (535-77-3), 4-Cymol (99-87-6), n-Butylbenzol (104-51-8), 1,2,3,5-Tetramethylbenzol (527-53-7), 1,2,4,5-Tetramethylbenzol (95-93-2), 2-Vinyltoluol (611-15-4), 3-Vinyltoluol (100-80-1), 4-Vinyltoluol (622-97-9), 1,3-Diisopropylbenzol (99-62-7), 1,4-Diisopropylbenzol (100-18-5), n-Oktylbenzol (Phenyloktan) (2189-60-8), n-Decylbenzol (1-Phenyldekan) (104-72-3), n-Undecylbenzol (1-Phenylundekan) (6742-54-7), alpha-Methylstyrol (98-83-9), beta-Methylstyrol (637-50-3), Indan (496-11-7),Inden (95-13-6), Naphthalin (91-20-3), 2-Methylnaphthalin (91-57-6), 1-Methylnaphthalin (90-12-0),Dimethylnaphthaline (28804-88-8), Acenaphthylen (208-96-8), Acenaphthen (83-32-9), Fluoren (86-73-7), Diisopropylnaphthalin (38640-62-9), Phenanthren (85-01-8), Tetralin (119-64-2), Summe Dimethylnaphthaline (28804-88-8)

Terpene: alpha-Pinen (*80-56-8*), Camphen (*79-92-5*), beta-Pinen (*127-91-3*), delta-3-Caren (13466-78-9), alpha-Terpinen (99-86-5), Limonen (138-86-3), Borneol (464-45-9), beta-Myrcen (123-35-3), Eucalyptol (470-28-6), beta-Linalool (78-70-6), Campher (76-22-2), Menthol (89-78-1), alpha-Terpineol (98-55-5), 4-t-Butylcyclohexylacetat (32210-23-4), Verbenon (1196-01-6), Longifolen (475-20-7), alpha-Phellandren (99-83-2), Linaloylacetat (115-95-7), Longipinen (5989-08-2), Isolongifolen (1135-66-6), beta-Caryophyllen (87-44-5), alpha-Caryophyllen (6753-98-6)

M 2355 FT ANALYSENBERICHT - SEITE 9 VON 11

Halogenierte Kohlenwasserstoffe: Dichlormethan (*75-09-2*), Trichlormethan (*67-66-3*), 1,2-Dichlorethan (*107-06-2*), 1,1,1-Trichlorethan (*71-55-6*), Trichlorethylen (*79-01-6*), Perchlorethylen (*127-18-4*), Chlorbenzol (*108-90-7*), 1,3-Dichlor-2-propanol (*96-23-1*), Epichlorhydrin (*106-89-8*), 1,2-Dichlorbenzol (*95-50-1*), 1,3-Dichlorbenzol (*541-73-1*), 1,4-Dichlorbenzol (*106-46-7*), 1-Chlornaphthalin (*90-13-1*), 2-Chlornaphthalin (*91-58-7*), 1,4-Dichlornaphthalin (*1825-31-6*), 1,5-Dichlornaphthalin (1825-30-5), Chloropren (126-99-8), 1,2-Dibromethan (106-93-4), 1,2,3-Trichlorpropan (96-18-4), 1,4-Dichlor-2(E)-buten (764-41-0), 1,2-Dibrom-3-chlorpropan (96-12-8), 4-Chlor-3-methylphenol (59-50-7), 1,2,3,4-Tetrachlorbenzol (634-66-2), 1,2-Dichlorpropan (78-87-5), Dimethylcarbamoylchlorid (79-44-7), 4-Chlorbenzotrichlorid (5216-25-1)

Ketone: 2-Butanon (*78-93-3*), 2-Pentanon (*107-87-9*), Methylisobutylketon (*108-10-1*), 2-Hexanon (*591-78-6*), 2-Heptanon (*110-43-0*), 3-Heptanon (*106-35-4*), Cyclohexanon (*108-94-1*), 6-Methylhept-5-en-2-on (*110-93-0*), Acetophenon (*98-86-2*), Benzophenon (*119-61-9*), Butenon (*78-94-4*), 3-Methyl-2-butanon (*563-80-4*), Cyclopentanon (*120-92-3*), Acetonaldol (*123-42-2*), 2-Methylcyclopentanon (*1120-72-5*), 2-Methylcyclohexanon (*583-60-8*)

Ether: THF (109-99-9), Dibutylether (142-96-1), Dioctylether (629-82-3), 2-Methylfuran (534-22-5), t-Butylmethyltether (tBME) (1634-04-4), 1,2,3,4-Diepoxybutan (1464-53-5), Phenylglycidylether (122-60-1)

Ester und Lactone: Methylacetat (*79-20-9*), Ethylacetat (*141-78-6*), n-Butylformiat (*592-84-7*), i-Butylacetat (*110-19-0*), n-Butylacetat (*123-86-4*), n-Pentylacetat (*628-63-7*), n-Hexylacetat (*142-92-7*), 2-Ethylhexylacetat (*103-09-3*), Triacetin (*102-76-1*), Methylacrylat (*96-33-3*), Ethylacrylat (*140-88-5*), Methylmethacrylat (*80-62-6*), n-Butylacrylat (*141-32-2*), n-Butylmethacrylat (*97-88-1*), 2-Ethylhexylacrylat (*103-11-7*), 1,6-Hexandioldiacrylat (*13048-33-4*), DMS (Dimethylsuccinat, Bernsteinsäuredimethylester) (*106-65-0*), DMG (Dimethylglutarat, Glutarsäuredimethylester) (*1119-40-0*), DMA (Dimethyladipat, Adipinsäuredimethylester) (*627-93-0*), gamma-Butyrolacton (*96-48-0*), Dinbutylmaleat (*105-76-0*), Texanol (*25265-77-4*), TXIB (2,2,4-Trimethylpentan-1,3-dioldiisobutyrat) (*6846-50-0*), DMP (Dimethylphthalat) (*131-11-3*), DEP (Dieethylphthalat) (*84-66-2*), DIBP (*84-69-5*), DBP (Dibutylphthalat) (*84-74-2*), Vinylacetat (108-05-4), i-Propylacetat (108-21-4), n-Propylacetat (109-60-4), n-Butylpropionat (590-01-2), Benzylacetat (140-11-4), Dibutylfumarat (105-75-9), Ethylencarbonat (96-49-1), 1,2-Propylencarbonat (108-32-7), 1,3-Propansulton (1120-71-4), Trimethylphosphat (512-56-1), Triethylphosphat (78-40-0), Tri-nbutylphosphat (126-73-8), DIBG (71195-64-7), DIBA (Diisobutyladipat) (141-04-8), DEHP (Di-2-Ethylhexylphthalat) (117-81-7)

Glykolderivate: Ethylenglykol (107-21-1), 1,2-PG (57-55-6), T3PG (24800-44-0), EGMM (109-86-4), 1,2-PGMM (107-98-2), EGME (110-80-5), EGMB (111-76-2), 1,2-PGMB (5131-66-8), EGMP (122-99-6), 1,2-PGMP (770-35-4), DEGMM (111-77-3), DEGME (111-90-0), DPGMM (34590-94-8), DPGDM (111109-77-4), DEGMB (112-34-5), DEGDB (112-73-2), DPGMB (29911-28-2), T3EGMB (143-22-6), T3PGMB (55934-93-5), EGMH (112-25-4), DEGMH (112-59-4), EGMMA (110-49-6), 1,2-PGMMA (108-65-6), EGMEA (111-15-9), EGMBA (112-07-2), DEGMBA (124-17-4), DEGDA (628-68-2), EGDM (Ethylenglykoldimethylether) (110-71-4), EGMiPr (2-Methylethoxyethanol) (109-59-1), 1,2-PGME (1,2-Propylenglykolmonoethylether) (1569-02-4), EGDE (Ethylenglykoldiethylether) (629-14-1/73506-93-1), 2-Propoxyethanol (2807-30-9), DEGDM (1-Methoxy-2-(2-methoxy-ethoxy)-ethan) (111-96-6), Diethylenglykol (111-46-6), DPG (Di-Propylenglykol) (110-98-5/25265-71-8), DEGDE (Diethylenglykoldiethylether) (112-36-7), DPGMtB (Dipropylenglykol-mono-t-butylether) (132739-31-2), T3EGDM (Triethylenglykol-dimethylether) (112-49-2), T3PGMM (Tripropylenglykol-mono-methylether) (20324-33-8/25498-49-1), 1,2-PGDM (1,2-Propylenglykoldimethylether) (63019-84-1/89399-28-0/111109-77-4), DPGMPr (Dipropylenglykol-mono-n-propylether) (29911-27-1), PGDA (Propylenglykol-di-acetat) (623-84-7), DPGMMA (Di-propylenglykol-mono-methylether-acetat) (88917-22-0), 1,2-PGMPr (1,2-Propylenglykol-n-propylether) (1569-01-3/30136-13-1), DEGMP (Diethylenglykol-phenylether) (104-68-7), Neopentylglykol (2,2-Dimethylpropan-1,3-diol) (126-30-7)

Aldehyde: Formaldehyd (50-00-0), Acetaldehyd (75-07-0), n-Propanal (123-38-6), n-Butanal (123-72-8), n-Pentanal (110-62-3), n-Hexanal (66-25-1), n-Heptanal (111-71-7), 2-Ethylhexanal (123-05-7), Glutardialdehyd (111-30-8), n-Oktanal (124-13-0), n-Nonanal (124-19-6), n-Dekanal (112-31-2), n-Undekanal (112-44-7), n-Dodekanal (112-54-9), Furfural (98-01-1), Benzaldehyd (100-52-7), Cuminaldehyd (122-03-2), Isobutanal (78-84-2), 3-Methylbutanal (590-86-3), 5-Methylfurfural (620-02-0), 2-Phenylethanal (122-78-1), Methacrolein* (78-85-3), Acrolein* (107-02-8), 2(E)-Butenal (123-73-9), 2(E)-Pentenal (1576-87-0), 2(E)-Hexenal (6728-86-3), 2(E)-Heptenal (18829-55-5), 2(E)-Octenal (2548-87-0), 2(E)-Nonenal (2463-53-8), 2(E)-Decenal (3913-81-3), 2(E)-Undecenal (53448-07-0), 8(Z)-Undecenal (147159-49-7)

Alkansäuren: Ethansäure (*64-19-7*), Propansäure (*79-09-4*), 2-Methylpropansäure (*79-13-2*), n-Butansäure (*107-92-6*), 2,2-Dimethylpropansäure (*75-98-9*), n-Pentansäure (*109-52-4*), n-Hexansäure (*142-62-1*), n-Heptansäure (*111-14-8*), n-Oktansäure (*124-07-2*), 2-Ethylhexansäure (*149-57-5*)

Alkohole: Ethanol (*64-17-5*), 2-Propanol (*67-63-0*), n-Propanol (*71-23-8*), Isobutanol (*78-83-1*), n-Butanol (*71-36-3*), n-Pentanol (*71-41-0*), 3-Methoxy-1-butanol (*2517-43-3*), n-Hexanol (*111-27-3*), n-Heptanol (*111-70-6*), 2-Ethylhexanol (*104-76-7*), n-Oktanol (*111-85-7*), n-Nonanol (*143-08-8*), n-Dekanol (*112-30-1*), Phenol (*108-95-2*), 2-Methylphenol (*108-39-4*), 3-Methylphenol (*95-48-7*), 4-Methylphenol (*106-44-5*), Benzylalkohol (*100-51-6*), BHT (*128-37-0*), TMDYD (*126-86-3*), *tert-Butanol* (*75-65-0*), *3-Pentanol* (*584-02-1*), *Cyclohexanol* (*108-93-0*), *1,4-Butandiol* (*110-63-4*), *2-Methyl-2,4-pentandiol* (*107-41-5*), *2-Phenylphenol* (*90-43-7*), *1,4-Cyclohexandimethanol c/t* (*105-08-8*), *3,5,5-Trimethyl-1-hexanol* (*3452-97-9*), *n-Undecanol* (*112-42-5*), *n-Dodecanol* (*112-53-8*), *n-Tridecanol* (*112-70-9*)

Sonstige Verbindungen: Triethylamin (121-44-8), 2-Butanonoxim (96-29-7), N,N-Dimethylformamid (68-12-2), N,N-Diethylformamid (617-84-5), N,N-Dibutylformamid (761-65-9), N-Methylpyrrolidon (872-50-4), N-Ethylpyrrolidon (2687-91-4), Anilin (62-53-3), 1,4-Dioxan (123-91-1), 2-Methylfuran (534-22-5), 2-Pentylfuran (3777-69-3), Benzothiazol (95-16-9), Caprolactam (105-60-2), Hexamethyldisiloxan (107-46-0), Siloxan D3 (541-05-9), Siloxan D4 (556-67-2), Siloxan D5 (541-02-6), Siloxan D6 (540-97-6), Siloxan D7 (107-50-6), Pyridin (110-86-1), 2-Vinylpyridin (100-69-6), MIT (2-Methyl-4-isothiazolin-3-on) (2682-20-4), 2-Octylisothiazolinon (OIT) (26530-20-1), Methenamin (Urotropin) (100-97-0), 2-Nitropropan (79-46-9), Dimethylsulfid (75-18-3), Dimethyldisulfid (624-92-0), Acrylnitril (107-13-1), N-Butyl-2-pyrrolidon (3470-98-2), Hexamethylphosphorsäuretriamid (680-31-9), N-Nitrosodipropylamin (621-64-7), N-Nitrosodiethanolamin (1116-54-7), Chinolin (91-22-5), Urethan (Ethylcarbamat) (51-79-6)

3.6 Zusammenfassung nach den Anforderungen des Bremer Umweltinstitutes

Parameter	M 2355 FT-1 Kiefernholz [μg/m³]	Anforderung BUI ^{1,7} [µg/m³]
Prüfkammerluft nach 3 Tagen		
TVOC	1800	≤ 3000
C-Stoffe Kat. 1 ³	< 1 ⁵	≤ 1
MR-Stoffe Kat. 1 ³	< 1 ⁵	≤ 10
Prüfkammerluft nach 28 Tagen		<u>.</u>
TVOC ⁶	860	≤ 300
Styrol	< BG	≤ 10
Methylisothiazolinon (MIT)	< BG	≤ 1
Acetaldehyd	< BG	≤ 30
Benzaldehyd	< BG	≤ 20
Formaldehyd	14	≤ 48
Essigsäure ⁸	53	≤ 500
CMR-Stoffe Kat. 2 ³	< 5 ⁴	≤ 50
Σ Aldehyde C ₄ -C ₁₁ , azyklisch, aliphatisch	43	≤ 50
Σ bicyclische Terpene	720	≤ 200
Σ R-Stoffe Kat. 1 ohne NIK-Wert	< 5 ⁴	≤ 20
Σ sensibilisierende Stoffe	470	≤ 100
Σ VOC ohne NIK-Wert	30	≤ 100
TSVOC	< 5 ⁴	≤ 100
R-Wert	0,70	≤ 1

TVOC = Summe aller organischen Verbindungen (identifizierte und nicht identifizierte Verbindungen) $\geq 5~\mu g/m^3$ im Retentionszeifenster von C_6 - C_{16} , nicht identifizierte Verbindungen bestimmt über den Response von Toluol, nach AgBB-Bewertungskonzept 2024 TSVOC = Summe aller Verbindungen $\geq 5~\mu g/m^3$ im Retentionszeitfenster von $C_{>16}$ - C_{22} ; nach AgBB-Bewertungskonzept 2024 NIK-Wert= Niedrigste Interessierende Konzentration nach AgBB-Bewertungsschema 2024, Tabelle 1

^{*}Das Verfahren kann nicht zur genauen Quantifizierung von ungesättigten Aldehyden eingesetzt werden, da sich mehrfache Derivat-Peaks und instabile Peakverhältnisse ergeben können; siehe auch DIN ISO 16000-3:2023-12.

R-Wert = Summe der Einzelstoffkonzentrationen \geq 5 μ g/m³ geteilt durch den entsprechenden NIK-Wert C-Stoffe = Σ krebserregende Verbindungen gemäß EG-Verordnung 1272/2008 sowie TRGS 905,

Berücksichtigungsgrenze 1 μg/m³

M-Stoffe = Σ mutagene Verbindungen gemäß EG-Verordnung 1272/2008 sowie TRGS 905, Berücksichtigungsgrenze: 5 μ g/m³

R-Stoffe = Σ reproduktionstoxische Verbindungen gemäß EG-Verordnung 1272/2008 sowie TRGS 905, Berücksichtigungsgrenze: 5 μ g/m³

CMR-Stoffe = Σ Krebserzeugende, mutagene und reproduktionstoxische Verbindungen gemäß EG-Verordnung 1272/2008 sensibilisierende Stoffe = Σ Verbindungen gem. MAK IV, BGVV-Liste Kat. A, TRGS 907, Berücksichtigungsgrenze: 5 μ g/m³

n.n. = nicht nachgewiesen bzw. Einzelstoffe $< 1 \mu g/m^3$, für Formaldehyd $< 5 \mu g/m^3$

Anforderung des Bremer Umweltinstitutes, Version 01/2021

² = DNPH-Methode, DIN ISO 16000-3 für Formaldehyd und weitere Aldehyde

³ = ohne Berücksichtigung von Formaldehyd

⁴ = jede Einzelverbindung < 5 μg/m³

⁵ = jede Einzelverbindung < 1 μg/m³, ohne Kanzerogene/R-Stoffe mit NIK-Wert

6 = ohne Berücksichtigung von Essigsäure bei pflanzlichen Materialien

⁷= Als Beurteilungsgrundlage wird der Messwert ohne Berücksichtigung von Messungenauigkeiten herangezogen.

⁸ = Essigsäure wird mit diesem Verfahren nur unvollständig erfasst.

<u>Anmerkung*</u>: Die Anforderungen des Bremer Umweltinstitutes an das Emissionsverhalten von Hölzern für Möbel werden aufgrund des Gehaltes an bicyclischen Terpenen (a-Pinen und d³-Caren), des Gesamt-VOC-Gehaltes (TVOC, vorrangig bedingt durch den Nachweis der bicyclischen Terpene) und der Summe der sensibilisierenden Verbindungen (verursacht vorrangig durch das Terpen d³-Caren) nach 28 Tagen in der Prüfkammer <u>nicht</u> erfüllt.

Bremen, 28.02.2025

Ulrike Siemers,

Dipl.-Ing. Chemietechnik (FH), Prüfleiterin

Die Untersuchungsergebnisse beziehen sich nur auf die geprüften Prüfgegenstände. Messunsicherheiten können auf Anfrage vorgelegt werden. Der Analysenbericht darf nur vollständig, bzw. nach Absprache mit dem Bremer Umweltinstitut auszugsweise, wiedergegeben werden.

- Ende des ANALYSENBERICHTS -